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ABSTRACT
A critical step in bridging the knowledge base with the huge
corpus of semi-structured Web list data is to link the en-
tity mentions that appear in the Web lists with the cor-
responding real world entities in the knowledge base, which
we call list linking task. This task can facilitate many differ-
ent tasks such as knowledge base population, entity search
and table annotation. However, the list linking task is chal-
lenging because a Web list has almost no textual context,
and the only input for this task is a list of entity mentions
extracted from the Web pages. In this paper, we propose
LIEGE, the first general framework to Link the entIties in
wEb lists with the knowledGe basE to the best of our knowl-
edge. Our assumption is that entities mentioned in a Web
list can be any collection of entities that have the same con-
ceptual type that people have in mind. To annotate the list
items in a Web list with entities that they likely mention, we
leverage the prior probability of an entity being mentioned
and the global coherence between the types of entities in
the Web list. The interdependence between different entity
assignments in a Web list makes the optimization of this list
linking problem NP-hard. Accordingly, we propose a prac-
tical solution based on the iterative substitution to jointly
optimize the identification of the mapping entities for the
Web list items. We extensively evaluated the performance
of our proposed framework over both manually annotated
real Web lists extracted from the Web pages and two public
data sets, and the experimental results show that our frame-
work significantly outperforms the baseline method in terms
of accuracy.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Storage and
Retrieval—Information Search and Retrieval

General Terms
Algorithms, Experimentation

Keywords
List linking, Knowledge base, Similarity metric, Iterative
substitution

1. INTRODUCTION
A large number of Web pages contain data structured in

the form of lists. A Web list on some Web page may enu-
merate a list of famous American basketball players, a list
of best-selling albums in the United States or a list of films
directed by James Cameron. In addition, table which is
another major source of structured data on the Web can
be regarded as a set of lists/columns. Therefore, lists are
considered as a general data structure to express entity ref-
erences. Items in Web lists often refer to entities, however,
as being free text form, the list items are potentially am-
biguous: the same textual name may refer to several differ-
ent real world entities. For instance, the entity mention of
“Michael Jordan” can refer to the famous basketball player,
the computer science professor who is one of the keynote
speakers in KDD’12, or some other persons.

Recently, the success of Wikipedia and the development
of information extraction techniques have facilitated the au-
tomated construction of large scale machine-readable knowl-
edge base about the world’s entities, their semantic classes
and their mutual relationships. Such kind of notable en-
deavors include DBpedia [2], KnowItAll [9], YAGO [21, 20]
and KOG [23, 24]. Bridging these knowledge bases with the
semi-structured Web lists is beneficial for the exploitation of
this huge corpus of structured data on the Web. Addition-
ally, the list linking task enables powerful join and union
operations that can integrate information across different
lists, tables and pages.

The list linking task is of practical importance and can
be used in various applications. For instance, 75% of the
tables on the Web typically have a column that is the sub-
ject of the table, and the subject column contains the set
of entities the table is about [22]. Linking this subject col-
umn with the knowledge base is significantly helpful for the
task of table annotation [16] and recovering the semantics
of tables [22]. As another example, linking the Web lists or
table columns with a knowledge base can enrich the existing
knowledge base and impulse the trend to advance the tra-
ditional keyword-based search to the semantic entity-based
search.

In recent years, considerable progresses have been made
in linking entities in free text with a knowledge base [3, 6,
7, 13, 15, 19]. When linking entities in free text, the textual
context is considered as the key evidence for disambigua-
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tion. The essential step in these previous approaches is to
define a similarity measure between the text around the en-
tity mention and the document associated with the entity.
While in our setting, lists never have any header text in-
formation and textual context. The only input for the list
linking task is a list of entity mentions extracted from the
Web pages, such as the Web list on the left of Figure 1. On
the other hand, most of the methods addressing the problem
of linking entities in free text exploit the observation that
entities mentioned from a single document are likely to be
semantically related [6, 15, 19]. However, the entities in a
Web list can be any set of entities that have the same con-
ceptual type, and they are semantically similar, rather than
semantically related. Accordingly, this observation for link-
ing entities in free text clearly cannot be applied to the Web
list data. From these two dimensions mentioned above, it
can be seen that the list linking task is challenging and dif-
ferent from the task of linking entities in free text. Moreover,
we are interested in linking these Web list items in a fully
automatic manner, and avoid tedious tuning or parameter
settings.

Given a knowledge base about the world’s entities, their
semantic classes and their mutual relationships, for each
Web list in the list corpus, our goal is to link each list item
in the Web list with the real world mapping entity existing
in the knowledge base. In this paper, we propose LIEGE,
a general framework to annotate the list items in the Web
lists with entities based on the assumption that entities in a
list can be any set of entities that have the same conceptual
type. Specifically, we propose to measure the linking qual-
ity of the candidate mapping entities in a straightforward
and comprehensive way. Intuitively, a candidate mapping
entity is “good” for some list item if it has two key proper-
ties: (1) the prior probability of the entity being mentioned
is high; (2) the type of the candidate mapping entity is co-
herent with the types of the other mapping entities in the
same list, in the sense that they represent a list of entities
having the same conceptual type. If the type of an entity is
coherent with the type of another entity, we say these two
entities are semantically similar. To calculate the seman-
tic similarity between entities, we leverage two categories of
information: (1) type hierarchy based similarity; (2) distri-
butional context similarity. To combine these signals to give
the linking quality for each candidate mapping entity, we use
the max-margin technique to automatically learn the proper
weights for different features. The interdependence between
different entity assignments in a Web list makes the infer-
ence of this problem NP-hard. Thus, we develop a practical
and effective solution based on the iterative substitution to
jointly optimize the entity assignments for each Web list.
Contributions. The main contributions of this paper are
summarized as follows.

• We propose LIEGE, the first framework that can effec-
tively link list items in the Web lists with the mapping
entities in the knowledge base to the best of our knowl-
edge.

• We propose to use the max-margin technique to au-
tomatically learn the proper weights for different fea-
tures to calculate the link quality for each candidate
mapping entity, which allows LIEGE to run without
tedious parameter tuning.

• We propose a practical and effective algorithm, called
iterative substitution algorithm, to jointly optimize the
identification of the mapping entities for the list items
of each Web list.

• To verify the effectiveness of our framework, we evalu-
ated our proposed framework LIEGE over both man-
ually annotated real Web list data set and two pub-
lic data sets, and the experimental results show that
our framework significantly outperforms the baseline
method in terms of accuracy.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces some preliminaries and notations. We
present the framework of LIEGE in Section 3. Section 4
presents our experimental results and Section 5 discusses
the related work. Finally, we conclude this paper in Section
6.

2. PRELIMINARIES AND NOTATIONS
In this section, we begin by describing the knowledge base

and the task of list linking. Next, we introduce the genera-
tion of candidate mapping entities for each list item.
Knowledge base. The knowledge base consists of a type
hierarchy and entities that are instances of types. The set
of types is denoted by T , and each t ∈ T is a type, such
as the type American singers. Types are connected by the
subtype relation t1 ⊂ t2, which means t1 is a subtype of
t2. For example, American singers is a subtype of Singers.
We use t1 ⊂∗ t2 to denote that t2 is an ancestor node of
t1 in the type hierarchy. The set of entities existing in the
knowledge base is denoted by E, and each e ∈ E is an entity,
such as the entity Michael Jackson. We say entity e is an
instance of one type t, denoted by e ∈ t. For instance, the
entity Michael Jackson is an instance of the type American
singers. We also use e ∈∗ t to denote that type t is an an-
cestor node of entity e in the hierarchy, thus, we can say,
Michael Jackson ∈∗ Singers. Let T (e) = {t|e ∈ t} be the
set of types of which entity e is the instance. Likewise, let
E(t) = {e|e ∈∗ t} be the set of entities having type t as an
ancestor node in the hierarchy. In this paper, the knowledge
base we adopt is YAGO [21, 20], an open-domain ontology
combining Wikipedia and WordNet [10] with high coverage
and quality. In YAGO, they use unique canonical strings
from Wikipedia as the entity names. Currently, YAGO con-
tains about 250,000 types and over one million entities.
List linking. The input of our framework LIEGE is a col-
lection of Web lists, and let L be a Web list with |L| items.
We use 1 ≤ i ≤ |L| to index the list item in L, and the list
item with index i is denoted by li. Each list item li ∈ L
is a token sequence of an entity mention that is potentially
linked with an entity in the knowledge base (see Figure 1 for
an example). For this list L, it is noted that we do not have a
name for it (i.e., the type of entities this list L enumerates).
And there are no textual context and header text about this
list L. Here, we formally state the list linking task as fol-
lows. Given the set of entities E in the knowledge base and
the Web list L, the goal is to identify the mapping entity
list M , with the same size as L, such that each mi ∈ M is
the mapping entity for the corresponding list item li ∈ L.
In this paper, we assume that the knowledge base contains
all the mapping entities for all the list items, i.e., M ⊂ E.
Candidate mapping entity. For each li ∈ L, the map-
ping entity mi should be the entity that may be referred by
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Table 1: A part of the dictionary D
K (Mention form) K.value (Mapping entity)

IBM IBM
HP Hewlett-Packard

Michael Jordan
Michael I. Jordan

Michael Jordan Michael Jordan (mycologist)
Michael Jordan (footballer)

. . .
Bill Hewlett William Reddington Hewlett

the token sequence of li. Therefore, we firstly identify all
the entities that may be referred by li, and denote this set
of entities as the candidate mapping entity set Ri for the
list item li. Let R = {Ri|li ∈ L} be the set of candidate
mapping entity sets for all the list items in the Web list L.

To identify Ri for each li ∈ L, we need to build a dic-
tionary D that contains vast amount of information about
various mention forms of the named entities, like name vari-
ations, abbreviations, confusable names, spelling variations,
nicknames, etc. The structure of the Wikipedia provides a
set of useful features for the creation of such a dictionary D.
In addition, Wikipedia has high coverage of named entities
[25], which is profitable for constructing the dictionary D as
well. The dictionary D is a <key, value> mapping, where
the column of the key K is a list of mention forms and the
column of the mapping value K.value is the set of named
entities which are referred by the key K. We construct the
dictionary D by leveraging the following four structures of
Wikipedia:
Entity page: Each entity page in Wikipedia describes a
single entity, and generally, the title of each entity page is
the most common name for that entity, e.g., the page title
“IBM” for that giant American company headquartered in
Armonk. Thus, we add the title of the entity page to the
key K, and add the entity described in this page to K.value.
Redirect page: A redirect page exists for each alternative
name which can be used to refer to an existing entity in
Wikipedia. For example, the redirect page titled “HP” con-
tains a pointer to the entity page titled “Hewlett-Packard”.
Henceforth, we add the title of the redirect page to the key
K, and add the pointed entity to K.value.
Disambiguation page: When multiple entities in Wikipedia
could be given the same name, a disambiguation page is
created to separate them and contains a list of references to
those entities. For instance, the disambiguation page for the
name “Michael Jordan” lists eight associated entities having
the same name of “Michael Jordan”, including the famous
NBA player and the Berkeley professor. For each disam-
biguation page, the title of this page is added to the key K,
and the entities listed in this page are added to K.value.
Hyperlink in Wikipedia article: The article in Wikipedia
often contains some hyperlinks each of which links to the
page of the corresponding entity mentioned in this article.
For example, in the entity page titled “Hewlett-Packard”,
there is a hyperlink pointing to the entity William Redding-
ton Hewlett whose anchor text is “Bill Hewlett”. Then we
add the anchor text of the hyperlink to the key K, and add
the pointed entity to K.value.

Using the four structures of Wikipedia described above,
we construct the dictionary D. A part of the dictionary D is

shown in Table 1. For each list item li ∈ L, we look up the
dictionary D and search for li in the column of the key K.
If a hit is found, i.e., li ∈ K, we add the set of the entities
li.value to the candidate mapping entity set Ri. We denote
the size of Ri as |Ri|, and use 1 ≤ j ≤ |Ri| to index the
candidate entity in Ri. The candidate mapping entity with
index j in Ri is denoted by ri,j .

In most cases, the size of the candidate mapping entity set
is larger than one. Figure 1 shows an example. The Web list
in Figure 1 enumerates 6 best-selling single-volume books on
the left. For each list item, we show its candidate mapping
entity set generated from the dictionaryD on the right of the
figure, and the real mapping entity is underlined. It is noted
that in Figure 1 each candidate entity has the name which
is the unique canonical string for that entity in Wikipedia,
and the size of the candidate mapping entity set for most of
the list items (5 out of 6) is larger than 1.

3. LIST LINKING
In this section, we introduce how to pick the proper entity

from Ri as the mapping entity mi for the list item li, when
|Ri| > 1. We firstly illustrate how to define the linking qual-
ity metric for each candidate mapping entity in Section 3.1.
Next, we show how to learn the proper weights for different
features to calculate the link quality for each candidate map-
ping entity in Section 3.2. Finally, we present an effective
algorithm, called iterative substitution algorithm, to jointly
optimize the identification of the mapping entities for the
list items of each Web list in Section 3.3.

3.1 Linking quality metric
Since each list item can refer to several candidate entities,

it is nontrivial to select the mapping entity of the list item
from the candidate mapping entity set. In this section, we
propose an intuitive and comprehensive metric to measure
the linking quality of the candidate mapping entity.
Prior probability: The first observation we have is that,
each candidate mapping entity ri,j ∈ Ri having the same
mention form li has different popularity, and some entities
are very obscure and rare for the given mention form li. For
the example in Figure 1, for the list item “A Tale of Two
Cities”, the candidate entity A Tale of Two Cities (musical),
the stage musical by Jill Santoriello, is much rarer than the
candidate entity A Tale of Two Cities, the novel by Charles
Dickens, and in most cases when people mention “A Tale
of Two Cities”, they mean the novel rather than the stage
musical whose name is also “A Tale of Two Cities”. We
formalize this observation via taking advantage of the count
information from Wikipedia, and define the prior probability
Ppr(ri,j) for each candidate mapping entity ri,j ∈ Ri with
respect to the list item li as the proportion of the links with
the mention form li as the anchor text which point to the
candidate mapping entity ri,j :

Ppr(ri,j) =
count(ri,j)∑|Ri|

u=1 count(ri,u)
(1)

where count(ri,j) is the number of links which point to entity
ri,j and have the mention form li as the anchor text.

For the example in Figure 1, with respect to the list item
“A Tale of Two Cities”, the prior probability of the entity
A Tale of Two Cities, the novel, is 0.6528, while the prior
probability of the entity A Tale of Two Cities (musical), the
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Web List

A  Ta le o f Two  Cities,     A  Ta le o f Two  Cities (m u sica l) ,     A  Ta le o f Two  Cities (1 9 3 5  film ),
A  Ta le o f Two  Cities (Lo st) ,   A  Ta le o f Two  Cities (1 9 1 1  film ),  A  Ta le o f Two  Cities (1 9 5 8  film )

Th e Da Vin ci Co d e

Th e Catch er in  th e Ry e

Fear o f Fly in g

Th e Go d fath er

Go n e with  th e W in d

Candidate  Mapping Entity Set

Th e D a  Vin ci Co d e,     Th e D a  Vin ci Co d e ( film )

Th e G o d fa th er, Th e G o d fa th er (n o vel) ,     Ch a rles Wrig h t (wrestler) ,     Th e G o d fa th er:  Th e G a m e

F ea r o f F lyin g  (Th e S im p so n s),     F ea r o f F lyin g , F ea r o f F lyin g  (n o vel) ,     F ea r o f F lyin g  (a lb u m )

G o n e with  th e Win d  (film ), G o n e with  th e Win d ,     G o n e with  th e Win d  (so n g ),
G o n e with  Th e Win d  (m u sica l)

Th e Ca tch er in  th e R ye

A  Tale o f Two  Cities

Figure 1: The candidate mapping entities for an example Web list

stage musical, is 0.1319. And the prior probabilities of all
other candidate entities for the list item “A Tale of Two
Cities”, e.g., A Tale of Two Cities (1935 film), A Tale of
Two Cities (Lost), are much smaller than that for the entity
A Tale of Two Cities. Moreover, in Figure 1, the candidate
mapping entities for each list item are ranked by their prior
probabilities shown on the right of the figure in decreasing
order. It can be seen that the notion of prior probability
suitably expresses the popularity of the candidate mapping
entity being mentioned given a mention form.
Coherence: A Web list usually enumerates some entities
which have the same conceptual type. As an example, the
Web list in Figure 1 enumerates some best-selling single-
volume books. We observe that the definition of prior prob-
ability does not capture the contextual meaning the Web
list represents. For the example in Figure 1, for the list item
“The Godfather”, the entity The Godfather, an American
epic crime film, which has the highest prior probability, is
not the corresponding mapping entity for this list item in
this Web list. The same situation occurs for the list items
“Gone with the Wind” and “Fear of Flying” in Figure 1.
Accordingly, to choose the mapping entity for a list item,
we should select the candidate entity whose type is coherent
with the types of the other mapping entities in the same Web
list. In other words, the mapping entity for some list item
should be semantically similar to the other mapping entities
in the same Web list. Therefore, we have the intuition that
the more semantically similar the candidate mapping entity
is to the other mapping entities in the same Web list, the
more likely the candidate entity is the correct mapping en-
tity for the list item. To capture this intuition, we formally
define the notion of coherence Coh(ri,j) for each candidate
mapping entity ri,j ∈ Ri as:

Coh(ri,j) =
1

|L| − 1

|L|∑

u=1,u �=i

Sim(ri,j ,mu) (2)

where mu is the mapping entity for the list item lu ∈ L,
and Sim(e1, e2) is the function that measures the semantic
similarity between entities e1 and e2, e1, e2 ∈ E.

To calculate the semantic similarity between entities, we
leverage two categories of information in this paper: (1)

type hierarchy based similarity; (2) distributional context
similarity.
Type hierarchy based similarity: To measure the se-
mantic similarity between entities based on type hierarchy,
we have the assumption that two entities are semantically
similar if they are in close places in the type hierarchy. Given
two entities e1, e2 ∈ E, T (e1) = {t|e1 ∈ t} is the set of
types of which entity e1 is the instance in the knowledge
base, likewise, T (e2) = {t|e2 ∈ t}. To measure the se-
mantic similarity Simhr(e1, e2) between e1 and e2 based on
type hierarchy, we firstly define how to calculate the seman-
tic similarity between the sets of types T (e1) and T (e2).
Since the sizes of T (e1) and T (e2), and the elements in
T (e1) and T (e2) are likely to be different, we start by defin-
ing the correspondence between the elements of types from
one set to another set. For each type t1 ∈ T (e1), we as-
sign a target type ε(t1) in another set T (e2) as follows:
ε(t1) = argmaxt2∈T (e2)

Simhr(t1, t2), where Simhr(t1, t2)
is the semantic similarity between two types t1 and t2 based
on type hierarchy, and ε(t1) is the type in T (e2) which max-
imizes the semantic similarity between these two types.

To compute Simhr(t1, t2), we adopt the approach intro-
duced in [17] which is an information-theoretic method. As-
suming t ∈ T is a type in the knowledge base, the amount of
information contained in the statement“x ∈ t”is−log(P (t)),
where P (t) is the probability that a randomly selected en-
tity e belongs to E(t), which is the set of entities having the
type t as an ancestor node in the hierarchy. We also assume
that t0 is the lowest common ancestor node for type nodes
t1 and t2 in the hierarchy. The following is the definition
of the semantic similarity between types t1 and t2 based on
type hierarchy:

Simhr(t1, t2) =
2× log(P (t0))

log(P (t1)) + log(P (t2))
(3)

Next, we can calculate the semantic similarity from one set
of types T (e1) to another set of types T (e2):

Simhr(T (e1) → T (e2)) =

∑
t1∈T (e1)

Simhr(t1, ε(t1))

|T (e1)| (4)

Similarly, we can calculate the semantic similarity from T (e2)
to T (e1), i.e., Simhr(T (e2) → T (e1)), in the similar way
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to that in Formula 4. Based on the definitions mentioned
above, we can define the semantic similarity between enti-
ties e1 and e2 based on type hierarchy as the average of the
semantic similarity from T (e1) to T (e2) and that from T (e2)
to T (e1):

Simhr(e1, e2) =
Simhr(T (e1) → T (e2)) + Simhr(T (e2) → T (e1))

2
(5)

For the example in Figure 1, the semantic similarity be-
tween entities A Tale of Two Cities and The Da Vinci Code,
a mystery-detective novel, based on the type hierarchy is
0.9527, while the semantic similarity between A Tale of Two
Cities (musical) and The Da Vinci Code is much smaller,
i.e., 0.3637.
Distributional context similarity: To measure the se-
mantic similarity between entities based on the contexts
where they appear in the external document corpus (e.g.
the Wikipedia article corpus), we have the assumption that
entities that occur in similar contexts are semantically sim-
ilar, which is the extension of the distributional hypothesis
[14]. We define the document context ηe for each entity
e ∈ E as the set of windows of words (removing all punc-
tuation symbols) before and after each occurrence of the
entity e in the external document corpus. Assume that an
entity e of length |e| words appears in a document at posi-
tion p. The size-k document context ηe of entity e should
contain these two windows of words, i.e., wp−k, . . . , wp−1

and wp+|e|, . . . , wp+|e|+k−1, around the occurrence of e. For
instance, the entity A Tale of Two Cities occurs in a doc-
ument containing such a sentence, “Simplified versions of A
Tale of Two Cities, a novel by Charles Dickens, have been
published ...”. When the size k is set to 4, we should add the
windows “Simplified versions of” and “a novel by Charles” to
the document context of the entity A Tale of Two Cities.
To compute the n-gram vector Ve for each entity e ∈ E, we
firstly add all n-grams in the size-k document context ηe of
entity e together with their frequencies, and then discard the
top W most frequent n-grams which appear in this vector
Ve. In the experiments, we set k = 4, W = 50. In order to
measure the distributional context similarity between enti-
ties e1 and e2, we calculate the cosine similarity of the two
n-gram vectors Ve1 and Ve2 for entities e1 and e2 respectively
as follows:

Simds(e1, e2) =

∑g
i=1 ai ∗ bi√∑g

i=1 a
2
i ∗

√∑g
i=1 b

2
i

(6)

where g is the number of distinct n-grams in the union of
the n-gram vectors for entities e1 and e2, each ai(bi) is
the frequency of the corresponding n-gram which appears
in the vector Ve1(Ve2), and Ve1 = 〈a1, a2, . . . , ag〉, Ve2 =
〈b1, b2, . . . , bg〉.

For the example in Figure 1, the distributional context
similarity between entities A Tale of Two Cities and The
Da Vinci Code is 0.0934, while the distributional context
similarity between A Tale of Two Cities (musical) and The
Da Vinci Code is much smaller, i.e., 0.0137.

In this paper, we only leverage these two categories of
information to calculate the semantic similarity between en-
tities, the function Sim in Formula 2 could be either one
of these two semantic similarity metrics, i.e., Simhr and
Simds, or their weighted sum. In addition, we emphasize
that our framework is general and extensible enough that
any other semantic similarity methods can be easily plugged
in to be used.

Linking quality: Based on the observation that both prior
probability and coherence contribute to the linking quality
of candidate mapping entity, we define the linking quality
LQ(ri,j) for each candidate mapping entity ri,j ∈ Ri as the
weighted sum of prior probability and coherence as follows:

LQ(ri,j) = α ∗ Ppr(ri,j) + (1− α) ∗ Coh(ri,j) (7)

where α is a weight factor that balances the importance
between prior probability and coherence.

With the definition of linking quality for each candidate
mapping entity, we also define the linking quality for the
mapping entity list M as the sum of the linking qualities of
the mapping entities for all the list items with respect to the
Web list L:

LQ(M) = α ∗
|L|∑

s=1

Ppr(ms) + (1− α) ∗
|L|∑

s=1

Coh(ms) (8)

where ms ∈ M and Coh(ms) can be calculated in the way
introduced in Formula 2. Thus, we have

LQ(M) = α∗
|L|∑

s=1

Ppr(ms)+
1− α

|L| − 1
∗

|L|∑

s=1

|L|∑

u=1,u �=s

Sim(ms,mu)

(9)
Now, we formally state the list linking task as follows:
List linking: Given the set of entities E in the knowledge
base, the Web list L and the definition of linking quality
in Formula 9, the goal is to identify the mapping entity
list M ⊂ E, with size |L|, such that the objective function
LQ(M) is maximized.

However, the inference problem of identifying the map-
ping entity list M ⊂ E, with size |L|, which maximizes the
objective function LQ(M) is NP-hard. The hardness can
be shown using a reduction from the maximal clique prob-
lem[11]. Details of proof are omitted to save space.

3.2 Weight learner
To measure the linking quality LQ(ri,j) for each candidate

mapping entity ri,j ∈ Ri, we use the definitions introduced
in Formulae 7 and 2. Thus, we have

LQ(ri,j) = α ∗ Ppr(ri,j) +
1− α

|L| − 1
∗

|L|∑

u=1,u �=i

Sim(ri,j ,mu)

(10)
where the function Sim could be the weighted sum of the
two semantic similarity metrics, i.e., Simhr and Simds, in-
troduced in Formulae 5 and 6 respectively. Thus,

LQ(ri,j) = α ∗ Ppr(ri,j) + β ∗ 1

|L| − 1

|L|∑

u=1,u �=i

Simhr(ri,j ,mu)

+γ ∗ 1

|L| − 1

|L|∑

u=1,u �=i

Simds(ri,j ,mu)

(11)

where α + β + γ = 1, and α, β and γ are weight factors
that give different weights for different feature values in the
calculation of the linking quality LQ(ri,j). Here, we denote−→w as the weight vector, and −→w = 〈α, β, γ〉. In this section,
we introduce how to learn the weight vector −→w based on the
training data set.
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To learn −→w , we use a max-margin technique based on the
training data set. Given the ground truth mapping entity
mi ∈ M for each list item li ∈ L, we assume that the linking
quality of the mapping entity LQ(mi) is larger than the
linking quality of any other candidate entity LQ(ri,j) with
a margin, where ri,j ∈ Ri and ri,j 	= mi. This gives us the
usual SVM linear constraints for all list items:

∀li,∀ri,j 	= mi ∈ Ri : LQ(mi)− LQ(ri,j) ≥ ξli (12)

and we maximize the objective Cli

∑
li
ξli where Cli is a

constant with respect to ξli , to learn the weight vector −→w =
〈α, β, γ〉 such that α+ β + γ = 1.

If the assumption is violated by some list item li, that is to
say, LQ(mi) is smaller than LQ(ri,j) for all ri,j 	= mi ∈ Ri,
we have ξli < 0. Therefore, for the list item li which violates
the assumption, i.e., ξli < 0, we give some penalty to it and
set Cli = θ, where θ is a constant that is larger than 1,
called penalty parameter; Otherwise, for the list item li,
ξli ≥ 0, we set Cli = 1. θ is the only parameter we have to
set in our framework, and in the experiments, we show that
the choice of θ does not affect the results of our framework
greatly. Accordingly, our framework can run without tedious
parameter tuning.

3.3 Iterative substitution algorithm
As the inference problem of identifying the mapping en-

tity list M ⊂ E, with size |L|, which maximizes the objec-
tive function LQ(M) is NP-hard, we propose an effective
algorithm, called iterative substitution algorithm, to jointly
optimize the identification of the mapping entity list M for
each Web list L in this section.

The iterative substitution algorithm starts with a good
guess of the mapping entity list from the candidate mapping
entity sets, and then iteratively refines the mapping entity
list to improve the linking quality as defined in Formula 9,
until the algorithm converges and a local maximum of the
linking quality of the mapping entity list is reached. To im-
prove the linking quality of the mapping entity list in each
iteration, the algorithm replaces the mapping entity of the
previous iteration with the candidate mapping entity which
maximizes the improvement of the overall linking quality of
the mapping entity list. The details of the iterative substi-
tution algorithm are described in Algorithm 1.

The iterative substitution algorithm depicted in Algorithm
1 takes the Web list L and the candidate mapping entity
sets R as input, and outputs the mapping entity list M
for the Web list L. We firstly calculate the prior probabil-
ity Ppr(ri,j) for each candidate entity ri,j in the candidate
entity set Ri of each list item li, as defined in Formula 1,
and pick the candidate entity which has the maximum prior

probability as the initial estimate of the mapping entity m
(0)
i

for the list item li (line 1-line 3). LetM
(0) be the initial map-

ping entity list for the Web list L (line 4). In the subsequent
iterations in the while loop, we iteratively identify the new
mapping entity list M (iter) based on the mapping entity list
of previous iteration M (iter−1), and gradually improve the
linking quality of the mapping entity list until the algorithm
converges and a local maximum is reached (line 6-line 20).
Specifically, in each iteration iter, for each candidate map-

ping entity ri,j 	= m
(iter−1)
i ∈ Ri of each list item li ∈ L,

where m
(iter−1)
i is the estimate of the mapping entity for li

of previous iteration, we compute the new mapping entity

Algorithm 1 Iterative Substitution Algorithm

Input: Web list L, candidate mapping entity sets R.
Output: mapping entity list M .

1: for each li ∈ L do
2: m

(0)
i = argmaxri,j Ppr(ri,j), ri,j ∈ Ri

3: end for

4: M (0) = {m(0)
i |li ∈ L}

5: iter = 1

6: while true do

7: for each li ∈ L do
8: for each ri,j 	= m

(iter−1)
i ∈ Ri do

9: M
(iter)
ri,j = (M (iter−1) − {m(iter−1)

i })⋃{ri,j}
10: IncreLQri,j = LQ(M

(iter)
ri,j )− LQ(M (iter−1))

11: end for
12: end for

13: rmax
i,j = argmaxri,j IncreLQri,j , ri,j ∈ Ri, Ri ∈ R

14: if IncreLQrmax
i,j

> 0 then

15: M (iter) = (M (iter−1) − {m(iter−1)
i })⋃{rmax

i,j }
16: iter ++
17: else
18: break
19: end if
20: end while

21: M = M (iter−1)

list M
(iter)
ri,j assuming that we substitute ri,j for m

(iter−1)
i to

choose ri,j as the mapping entity for li in iteration iter (line
9), and then calculate the improvement of the linking quality
of the mapping entity list IncreLQri,j if this substitution is
operated (line 10). Let rmax

i,j be the candidate entity which
achieves the maximum improvement of the linking quality of
the mapping entity list (line 13). If IncreLQrmax

i,j
> 0, we

substitute rmax
i,j for m

(iter−1)
i to generate the mapping entity

list M (iter) of iteration iter, and continue the iteration(line
14-line 16). Otherwise, if IncreLQrmax

i,j
≤ 0, the algorithm

has converged and reached a local maximum, thus, we stop
the algorithm (line 18) and return M (iter−1) as the result of
the mapping entity list M for L (line 21).

We state that the computation of the mapping entity list
M in Algorithm 1 is guaranteed to converge, and the itera-
tive substitution algorithm depicted in Algorithm 1 is bound
to terminate. Here, we give out the proof of the conver-
gence of the iterative substitution algorithm. We note that
the linking quality of the mapping entity list LQ(M (iter))
of each iteration iter is greater than the linking quality of
the mapping entity list LQ(M (iter−1)) of the previous iter-
ation (iter − 1). Thus, we can say that the linking quality

LQ(M (iter)) is monotonically increasing with the number
of iteration iter. Moreover, since M ⊂ E, the number of
different mapping entity lists is finite. The linking quality
LQ(M) has an upper bound. Accordingly, we know that
the iterative substitution algorithm is bound to stop and the
computation of M in Algorithm 1 converges. Though we do
not know the upper bound on the number of iterations Al-
gorithm 1 may run until it terminates, in our experiments,
we observe that it converges quickly and typically takes only
a few iterations.
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Table 2: Summary of the data sets
# tables # lists # list items

Wiki Manual 36 66 1691
Web Manual 371 550 9239
Web Lists N/A 50 2520

4. EXPERIMENTS
To evaluate the effectiveness of LIEGE, we present a thor-

ough experimental study in this section. We firstly describe
the experimental setting in Section 4.1 and then show the
experimental results in Section 4.2.

4.1 Experimental setting
To the best of our knowledge, there is no publicly available

data set for the list linking task. However, we found that
the table annotation task introduced in [16] has a subtask,
whose goal is to annotate the table cells in Web tables with
the mapping entities in the knowledge base. Though this
subtask is not the same as our list linking task, we could
regard each column of each table in the data sets as a Web
list, and used the ground truth annotation in [16] to evaluate
the performance of our framework. Specifically, we used two
Web table data sets, i.e., Wiki Manual and Web Manual,
introduced in [16]. The Wiki Manual data set contains 36
(non-Infobox) tables selected from Wikipedia article text,
and the Web Manual data set consists of 371 Web tables
similar to the Web tables in Wiki Manual. The main dif-
ference between Wiki Manual and Web Manual is that the
cells in the latter are more noisy. In both of these two data
sets, the table cells whose mapping entities do not exist in
the knowledge base have been dropped from the labeling
task [16]. A summary of the data sets used in this paper is
shown in Table 2. From the summary in Table 2, we can
see that the average number of annotated columns for each
table is less than 2 in both Wiki Manual and Web Manual
data sets.

In addition, to verify the effectiveness of our framework
over the real Web list data set, we collected 50 Web lists
from the Web and manually annotated the list items with
the mapping entities in the knowledge base, which we refer
as the Web Lists data set. The Web lists in our Web Lists
data set enumerate various kinds of entities, such as a list
of American basketball coaches, a list of best-selling single-
volume books and a list of best films winning the Empire
Award. In our experiments, we evaluate the performance
of LIEGE using only the list items whose mapping entities
exist in the knowledge base. The summary of this data set
is also shown in Table 2.

In the following experiments, we used YAGO(1)1 of ver-
sion 2008-w40-2 as the knowledge base, which is the same
version as that used in [16]. We downloaded the May 2011
version of Wikipedia to construct the dictionary D intro-
duced in Section 2. Then we used the dictionary D to gen-
erate the candidate mapping entity set Ri for each list item
li ∈ L. If the size of the candidate mapping entity set |Ri|
of some list item li equals 0, we considered that the textual
form of this list item has some noise. We processed this
kind of list items by some methods, such as eliminating ap-
positives (either within parentheses or following a comma),
removing the sequence number at the beginning of the tex-

1http://www.mpi-inf.mpg.de/yago-naga/yago/

Table 3: Experimental results over Wiki Manual
Approach # correctly linked Accuracy

TableAnno 1419 0.8392
LIEGEβ=0,γ=0 1461 0.8640
LIEGEβ=0 1519 0.8983
LIEGEγ=0 1498 0.8859
LIEGEfull 1536 0.9083

Table 4: Experimental results over Web Manual
Approach # correctly linked Accuracy

TableAnno 7518 0.8137
LIEGEβ=0,γ=0 7925 0.8578
LIEGEβ=0 8219 0.8896
LIEGEγ=0 8097 0.8764
LIEGEfull 8249 0.8928

tual form, eliminating the redundant white spaces in the tex-
tual form and correcting the spelling errors using the query
spelling correction supplied by Google. Then we generated
the candidate mapping entity sets for these list items using
the dictionary D again. To generate the document context
for each entity to calculate the distributional context simi-
larity, we employed these downloaded 3.5 million Wikipedia
pages as the external document corpus, where each entity in
the Wikitext has been converted to its canonical representa-
tion. To learn the weight vector introduced in Section 3.2,
we set θ = 100. In the next section, we will show that the
results of our framework LIEGE is insensitive to the param-
eter θ and the choice of θ does not affect the results greatly.
To evaluate the results of our framework, we calculated the
accuracy as the number of correctly linked list items divided
by the total number of all list items.

4.2 Experimental results
We compared our framework LIEGE with the algorithm

proposed in [16], which we refer as TableAnno, over the
Wiki Manual and Web Manual data sets. To give a fair
comparison, we used the Wiki Manual data set to learn the
weight vector −→w and testing was done over the Wiki Manual
and Web Manual data sets, which is the same way as that
proposed in [16]. The experimental results of the baseline
method TableAnno performing collective inference in the full
model over the Wiki Manual and Web Manual data sets in-
troduced in [16] are shown in Tables 3 and 4, respectively.
The experimental results of our framework LIEGE over the
Wiki Manual and Web Manual data sets are also presented
in Tables 3 and 4 respectively. In these two tables, besides
the accuracy, we also show the number of correctly linked
list items. For our framework LIEGE, we do not only show
the performance of LIEGE leveraging all the features intro-
duced in this paper, which we refer as LIEGEfull, but also
present the performance of LIEGE leveraging a subset of the
features. When we calculated the linking quality using the
Formula 11, if we set β = 0 and γ = 0, it means we only
leveraged the feature of prior probability to address the list
linking task, which we refer as LIEGEβ=0,γ=0. If we only set
β = 0, it means that we leveraged the features of prior prob-
ability and distributional context similarity, which we refer
as LIEGEβ=0. Likewise, if we only set γ = 0, it means that
we leveraged the features of prior probability and type hier-
archy based similarity, which we refer as LIEGEγ=0. From
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Table 5: Experimental results over Web Lists
Approach # correctly linked Accuracy

LIEGEβ=0,γ=0 1969 0.7813
LIEGEβ=0 2329 0.9242
LIEGEγ=0 2265 0.8988
LIEGEfull 2352 0.9333

Figure 2: Sensitivity analysis to θ

the experimental results shown in Tables 3 and 4, we obtain
the same conclusion that our framework leveraging differ-
ent subsets of features achieves significantly higher accuracy
than the baseline method TableAnno, which performs col-
lective inference using entities, types and relationships. It
can be also seen from the results in Tables 3 and 4 that ev-
ery feature has a positive impact on the performance of our
framework, and with the combination of all features LIEGE
can obtain the best results.

The baseline method TableAnno is proposed to deal with
the table annotation task [16], while for the Web list data
set, TableAnno cannot perform collective inference using
entities, types and relationships. Moreover, the approach
LIEGEβ=0,γ=0, only leveraging the feature of prior probabil-
ity, significantly outperforms the approach TableAnno over
both Wiki Manual and Web Manual data sets. Thus, we
did not compare our framework LIEGE with the TableAnno
method over the Web Lists data set. To learn the weight
vector −→w on the Web Lists data set, we used 2-fold cross
validation. We show the experimental results of LIEGE
leveraging different subsets of features over the Web Lists
data set in Table 5. From the results in Table 5, it can be
seen that the list linking task over the Web Lists data set is
more challenging compared with that over the Wiki Manual
and Web Manual data sets, as the accuracy achieved by
the approach LIEGEβ=0,γ=0 over the Web Lists data set
(78.13%) is much smaller than those over the Wiki Manual
(86.40%) andWeb Manual (85.78%) data sets. However, the
approach LIEGEfull leveraging all the features obtains very
high accuracy over the Web Lists data set, which demon-
strates the effectiveness of our framework LIEGE over the
Web list data set.

To better understand the performance characteristics of
our proposed LIEGE framework, we conducted sensitivity
analysis to understand the influence of the parameter θ to
the results of LIEGE. Here, we used our framework leverag-
ing all the features LIEGEfull as the example. Figure 2 de-
picts the performance of LIEGEfull with varied parameter θ
over these three data sets, i.e., Wiki Manual, Web Manual
and Web Lists, respectively. Recall that the parameter θ

is called the penalty parameter in Section 3.2, which gives
some penalty to the list item which violates the assumption.
From the trends plotted in Figure 2, it can be seen that
when θ is set to be larger than 40, the accuracies achieved by
LIEGEfull are stable with varied θ and remain the best over
these three data sets, which demonstrates that the results
of our framework are insensitive to the parameter θ, and
the choice of θ does not affect the results greatly. Thus, we
set θ = 100 in all experiments introduced above. While we
only report the performance of LIEGEfull over these three
data sets, similar trends are observed for the approaches
LIEGEβ=0 and LIEGEγ=0 over all these three data sets.

5. RELATED WORK AND DISCUSSION
As more and more knowledge bases like DBpedia [2], Know-

ItAll [9], YAGO [21, 20] and KOG [23, 24] are available pub-
licly, considerable progresses have been made in linking en-
tities in free text with a knowledge base [3, 6, 7, 13, 15, 19].
Entity linking is the task to link a textual entity mention
in the unstructured free text, with the corresponding real
world entity in an existing knowledge base. Bunescu and
Pasca [3] firstly tackled this problem by exploiting a set of
useful features derived from Wikipedia for entity detection
and disambiguation. They leveraged the bag of words model
to measure the cosine similarity between the context of the
mention and the text of the Wikipedia article, and selected
the entity whose Wikipedia article is most similar to the con-
text where the mention appears as the mapping entity for
this mention. Cucerzan [6] proposed a solution which is the
first system to recognize the global document-level topical
coherence of the entities. The system addresses the entity
linking problem through a process of maximizing the agree-
ment between the context of the entity mention and the con-
textual information extracted from the Wikipedia, as well
as the agreement among the categories associated with the
candidate entities. The learning based solution in [7] focuses
on the classification framework to resolve entity linking. It
develops a comprehensive feature set based on the entity
mention, the contextual document and the knowledge base
entry, and then uses a SVM ranker to score each candidate
entity. Han and Sun [13] proposed a generative probabilis-
tic model for the entity linking task. This model incorpo-
rates multiple types of heterogenous entity knowledge, i.e.,
popularity knowledge, name knowledge and context knowl-
edge. Our previous work [19] proposed LINDEN to deal
with the entity linking task. LINDEN is a novel framework
to link named entities in text with a knowledge base unify-
ing Wikipedia and WordNet, by leveraging the rich semantic
knowledge embedded in the Wikipedia and the taxonomy of
the knowledge base. In all these work, the essential step
is to define a similarity measure between the text around
the entity mention and the document associated with the
entity. While in our list linking task, lists never have any
header text information and textual context. The only input
for the list linking task is a list of entity mentions extracted
from the Web pages. Therefore, these methods cannot be
applied to our list linking task.

Kulkarni et al. [15] proposed a general collective disam-
biguation approach based on the observation that coherent
documents refer to entities from one or a few related top-
ics or domains, and entities mentioned from a single docu-
ment are likely to be semantically related. In that paper,
they gave precise formulations for the trade-off between lo-
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cal compatibility between mention and entity and measures
of global coherence between entities. However, this observa-
tion cannot be applied to the Web list data, since the entity
mentions in a Web list can be any set of entities that have
the same conceptual type, that is to say, they are semanti-
cally similar, rather than semantically related. Accordingly,
it can be seen that the list linking task is challenging and
greatly different from the traditional entity linking task.

Another thread of research related to our work is manag-
ing structured data on the Web [1, 4, 5, 18, 8, 12, 22, 16].
These solutions were proposed to find, extract and integrate
structured data on the Web. The work most related to our
list linking task is the model proposed in [16] to address the
problem of table annotation. In that paper, the table an-
notation task is defined as three subtasks: annotating each
column of the table with one or more types, annotating pairs
of columns with a binary relation in the knowledge base and
mapping table cells with entities that they likely mention
in the knowledge base. They proposed a new probabilis-
tic graphical model for simultaneously associating entities
for cells, types for columns and binary relations for column
pairs. Specifically, they modeled the table annotation prob-
lem as a joint distribution over variables, and the goal is to
find optimal values to the variables that maximize the joint
probability. However, for the subtask of annotating table
cells with entities, they did not consider the prior probabil-
ity of entities being mentioned and the semantic similarity
between each pair of entities in the same column or list,
which have been shown to be significantly important and
effective in our experiments for the list linking task.

6. CONCLUSION
In this paper, we have studied the problem of list linking.

We propose LIEGE, the first framework that can effectively
link list items in the Web lists with a knowledge base to the
best of our knowledge. LIEGE is based on the observation
that the type of the mapping entity should be coherent with
the types of the other mapping entities in the same Web list.
To evaluate the effectiveness of LIEGE, a thorough experi-
mental study was conducted, and the experimental results
demonstrate that our framework significantly outperforms
the baseline method in terms of accuracy. Moreover, LIEGE
can run in a fully automatic manner without tedious param-
eter tuning.
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